Bibliografia
ABJ. Tempo dos processos relacionados à adoção., 2014.
Disponível em: <https://abj.org.br/pesquisas/adocao/>.
ABJ. Observatório da insolvência: Rio de Janeiro.,
2021. Disponível em: <https://abj.org.br/pesquisas/obsrjrj/>.
ABJ. Diagnóstico do Contencioso Tributário
Administrativo., 2022. Disponível em: <https://abj.org.br/pesquisas/bid-tributario/>.
AHN, L. VON et al. reCAPTCHA: Human-Based Character Recognition via Web
Security Measures. Science, v. 321, n. 5895, p.
1465–1468, 12 set. 2008. Disponível em: <https://www.science.org/doi/10.1126/science.1160379>.
AHN, L. VON; BLUM, M.; LANGFORD, J. Telling humans and computers
apart automatically or how lazy cryptographers do AI (Tech. Rep. No.
CMU-CS-02-117). Disponível em: <http://reports-archive.adm.cs.cmu.edu/anon/2002/CMU-CS-02-117.pdf>.
ALLAIRE, J.; TANG, Y. tensorflow: R Interface to ’TensorFlow’. 2022.
Disponível em: <https://CRAN.R-project.org/package=tensorflow>.
BALDI, P.; SADOWSKI, P. J. Understanding dropout. Advances in
neural information processing systems, v. 26, 2013.
BLUM, A.; KALAI, A. A note on learning from multiple-instance examples.
Machine learning, v. 30, n. 1, p. 2329, 1998.
BOETTIGER, C.; HO, T. piggyback: Managing Larger Data on a GitHub
Repository. 2022. Disponível em: <https://CRAN.R-project.org/package=piggyback>.
CHELLAPILLA, K. et al. Designing human friendly human
interaction proofs (HIPs). : CHI ’05.New York, NY, USA:
Association for Computing Machinery, 2 abr. 2005. Disponível em: <https://doi.org/10.1145/1054972.1055070>.
CHELLAPILLA, K.; SIMARD, P. Using machine learning to break visual human
interaction proofs (HIPs). Advances in neural information
processing systems, v. 17, 2004.
COLOSIMO, E. A.; GIOLO, S. R. Análise de sobrevivência
aplicada. Editora Blucher, 2006.
COUR, T.; SAPP, B.; TASKAR, B. Learning from partial labels. The
Journal of Machine Learning Research, v. 12, p. 15011536, 2011.
FALBEL, D. luz: Higher Level ’API’ for ’torch’. a2022. Disponível em:
<https://CRAN.R-project.org/package=luz>.
FALBEL, D. torchvision: Models, Datasets and Transformations for Images.
b2022. Disponível em: <https://CRAN.R-project.org/package=torchvision>.
FALBEL, D.; LURASCHI, J. torch: Tensors and Neural Networks with ’GPU’
Acceleration. 2022. Disponível em: <https://CRAN.R-project.org/package=torch>.
FENG, L. et al. Provably consistent partial-label learning.
Advances in Neural Information Processing Systems, v.
33, p. 1094810960, a2020.
FENG, L. et al. Learning with multiple complementary
labels. PMLR, b2020.
GEORGE, D. et al. A generative vision model that trains with high data
efficiency and breaks text-based CAPTCHAs. Science, v.
358, n. 6368, p. eaag2612, 2017.
GOODFELLOW, I. J. et al. Multi-digit number recognition from street view
imagery using deep convolutional neural networks. arXiv preprint
arXiv:1312.6082, 2013.
GOODFELLOW, I. J. et al. Generative Adversarial
Networks. arXiv, jun. 2014. Disponível em:
<https://arxiv.org/abs/1406.2661>.
GRANDVALET, Y. Logistic regression for partial labels.
2002.
HÜLLERMEIER, E.; BERINGER, J. Learning from ambiguously labeled
examples. Intelligent Data Analysis, v. 10, n. 5, p.
419439, 2006.
IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. PMLR,
2015.
ISHIDA, T. et al. Learning from complementary labels. Advances
in neural information processing systems, v. 30, 2017.
JIN, R.; GHAHRAMANI, Z. Learning with multiple labels. Advances
in neural information processing systems, v. 15, 2002.
KAUR, K.; BEHAL, S. Captcha and Its Techniques: A Review.
International Journal of Computer Science and Information
Technologies, v. 5, 1 jan. 2014.
KINGMA, D. P.; BA, J. Adam: A Method for Stochastic
Optimization. n. arXiv:1412.6980, jan. 2017. Disponível em:
<https://arxiv.org/abs/1412.6980>.
KUHN, M.; JOHNSON, K. Feature engineering and selection: A
practical approach for predictive models. CRC Press, 2019.
LECUN, Y. et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, v. 86, n. 11, p.
22782324, 1998.
LECUN, Y. A. et al. Efficient backprop. Em: Springer, 2012. p. 948.
LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning.
nature, v. 521, n. 7553, p. 436444, 2015.
LI, J.; TSUNG, F.; ZOU, C. Multivariate binomial/multinomial control
chart. IIE Transactions, v. 46, n. 5, p. 526542, 2014.
LILLIBRIDGE, M. D. et al. Method for Selectively Restricting
Access to Computer Systems., fev. 2001.
LIU, L.; DIETTERICH, T. A conditional multinomial mixture model for
superset label learning. Advances in neural information
processing systems, v. 25, 2012.
MICHENER, G.; MONCAU, L. F.; VELASCO, R. B. Estado brasileiro e
transparência avaliando a aplicação da Lei de Acesso à
Informação.
MORI, G.; MALIK, J. Recognizing objects in adversarial clutter:
Breaking a visual CAPTCHA. IEEE, 2003.
MURRAY, N.; MARCHESOTTI, L.; PERRONNIN, F. AVA: A large-scale
database for aesthetic visual analysis. IEEE, 2012.
MURRAY-RUST, P. Open data in science. Nature
Precedings, p. 11, 2008.
NA, B. et al. Deep Generative Positive-Unlabeled Learning under
Selection Bias. : CIKM ’20.New York, NY, USA: Association for
Computing Machinery, 19 out. 2020. Disponível em: <https://doi.org/10.1145/3340531.3411971>.
NELDER, J. A.; WEDDERBURN, R. W. Generalized linear models.
Journal of the Royal Statistical Society: Series A
(General), v. 135, n. 3, p. 370384, 1972.
NOH, H. et al. Regularizing deep neural networks by noise: Its
interpretation and optimization. Advances in Neural Information
Processing Systems, v. 30, 2017.
OOMS, J. magick: Advanced Graphics and Image-Processing in R. 2021.
Disponível em: <https://CRAN.R-project.org/package=magick>.
R CORE TEAM. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2021. Disponível em: <https://www.R-project.org/>.
RAMESH, A. et al. Hierarchical Text-Conditional Image
Generation with CLIP Latents. n. arXiv:2204.06125,
abr. 2022. Disponível em: <https://arxiv.org/abs/2204.06125>.
RESHEF, E.; RAANAN, G.; SOLAN, E. Method and System for
Discriminating a Human Action from a Computerized Action.,
2005.
SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An
introduction. MIT press, 2018.
TRECENTI, J. et al. decryptr: An extensible API for breaking captchas.
2022.
TURING, A. M. Computing machinery and intelligence. Em: Springer, 2009.
p. 2365.
USHEY, K.; ALLAIRE, J.; TANG, Y. reticulate: Interface to ’Python’.
2022. Disponível em: <https://CRAN.R-project.org/package=reticulate>.
VON AHN, L. et al. Captcha: Telling Humans and
Computers Apart Automatically. Proceedings of Eurocrypt.
Anais...2003.
VON AHN, L.; BLUM, M.; LANGFORD, J. Telling Humans and Computers Apart
Automatically. Communications of the ACM, v. 47, n. 2,
p. 56–60, 2004.
W3C. Inaccessibility of CAPTCHA., 2021. Disponível em:
<https://www.w3.org/TR/turingtest/>.
WANG, Y. et al. Make complex captchas simple: a fast text captcha solver
based on a small number of samples. Information
Sciences, v. 578, p. 181194, 2021.
WICKHAM, H. stringr: Simple, Consistent Wrappers for Common String
Operations. b2022. Disponível em: <https://CRAN.R-project.org/package=stringr>.
WICKHAM, H. rvest: Easily Harvest (Scrape) Web Pages. a2022. Disponível
em: <https://CRAN.R-project.org/package=rvest>.
WICKHAM, H.; BRYAN, J.; BARRETT, M. usethis: Automate Package and
Project Setup. 2022. Disponível em: <https://CRAN.R-project.org/package=usethis>.
WICKHAM, H.; HESTER, J.; OOMS, J. xml2: Parse XML. 2021. Disponível em:
<https://CRAN.R-project.org/package=xml2>.
YE, G. et al. Yet another text captcha solver: A generative
adversarial network based approach. 2018.
YU, X. et al. Learning with biased complementary
labels. 2018.
YUAN, X. et al. Adversarial examples: Attacks and defenses for deep
learning. IEEE transactions on neural networks and learning
systems, v. 30, n. 9, p. 28052824, 2019.
ZHAO, B. Web scraping. Encyclopedia of big data, p. 13,
2017. Disponível em: <https://www.researchgate.net/profile/Bo-Zhao-3/publication/317177787_Web_Scraping/links/5c293f85a6fdccfc7073192f/Web-Scraping.pdf>.
ZHOU, Z.-H. A brief introduction to weakly supervised learning.
National science review, v. 5, n. 1, p. 4453, 2018.
ZHU, X. J. Semi-supervised learning literature survey. 2005.