Bibliografia

ABJ. Tempo dos processos relacionados à adoção., 2014. Disponível em: <https://abj.org.br/pesquisas/adocao/>.
ABJ. Observatório da insolvência: Rio de Janeiro., 2021. Disponível em: <https://abj.org.br/pesquisas/obsrjrj/>.
ABJ. Diagnóstico do Contencioso Tributário Administrativo., 2022. Disponível em: <https://abj.org.br/pesquisas/bid-tributario/>.
AHN, L. VON et al. reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science, v. 321, n. 5895, p. 1465–1468, 12 set. 2008. Disponível em: <https://www.science.org/doi/10.1126/science.1160379>.
AHN, L. VON; BLUM, M.; LANGFORD, J. Telling humans and computers apart automatically or how lazy cryptographers do AI (Tech. Rep. No. CMU-CS-02-117). Disponível em: <http://reports-archive.adm.cs.cmu.edu/anon/2002/CMU-CS-02-117.pdf>.
ALLAIRE, J.; TANG, Y. tensorflow: R Interface to ’TensorFlow’. 2022. Disponível em: <https://CRAN.R-project.org/package=tensorflow>.
BALDI, P.; SADOWSKI, P. J. Understanding dropout. Advances in neural information processing systems, v. 26, 2013.
BLUM, A.; KALAI, A. A note on learning from multiple-instance examples. Machine learning, v. 30, n. 1, p. 2329, 1998.
BOETTIGER, C.; HO, T. piggyback: Managing Larger Data on a GitHub Repository. 2022. Disponível em: <https://CRAN.R-project.org/package=piggyback>.
CHELLAPILLA, K. et al. Designing human friendly human interaction proofs (HIPs). : CHI ’05.New York, NY, USA: Association for Computing Machinery, 2 abr. 2005. Disponível em: <https://doi.org/10.1145/1054972.1055070>.
CHELLAPILLA, K.; SIMARD, P. Using machine learning to break visual human interaction proofs (HIPs). Advances in neural information processing systems, v. 17, 2004.
COLOSIMO, E. A.; GIOLO, S. R. Análise de sobrevivência aplicada. Editora Blucher, 2006.
COUR, T.; SAPP, B.; TASKAR, B. Learning from partial labels. The Journal of Machine Learning Research, v. 12, p. 15011536, 2011.
FALBEL, D. luz: Higher Level ’API’ for ’torch’. a2022. Disponível em: <https://CRAN.R-project.org/package=luz>.
FALBEL, D. torchvision: Models, Datasets and Transformations for Images. b2022. Disponível em: <https://CRAN.R-project.org/package=torchvision>.
FALBEL, D.; LURASCHI, J. torch: Tensors and Neural Networks with ’GPU’ Acceleration. 2022. Disponível em: <https://CRAN.R-project.org/package=torch>.
FENG, L. et al. Provably consistent partial-label learning. Advances in Neural Information Processing Systems, v. 33, p. 1094810960, a2020.
FENG, L. et al. Learning with multiple complementary labels. PMLR, b2020.
GEORGE, D. et al. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science, v. 358, n. 6368, p. eaag2612, 2017.
GOODFELLOW, I. J. et al. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082, 2013.
GOODFELLOW, I. J. et al. Generative Adversarial Networks. arXiv, jun. 2014. Disponível em: <https://arxiv.org/abs/1406.2661>.
GRANDVALET, Y. Logistic regression for partial labels. 2002.
HÜLLERMEIER, E.; BERINGER, J. Learning from ambiguously labeled examples. Intelligent Data Analysis, v. 10, n. 5, p. 419439, 2006.
IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. PMLR, 2015.
ISHIDA, T. et al. Learning from complementary labels. Advances in neural information processing systems, v. 30, 2017.
JIN, R.; GHAHRAMANI, Z. Learning with multiple labels. Advances in neural information processing systems, v. 15, 2002.
KAUR, K.; BEHAL, S. Captcha and Its Techniques: A Review. International Journal of Computer Science and Information Technologies, v. 5, 1 jan. 2014.
KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. n. arXiv:1412.6980, jan. 2017. Disponível em: <https://arxiv.org/abs/1412.6980>.
KUHN, M.; JOHNSON, K. Feature engineering and selection: A practical approach for predictive models. CRC Press, 2019.
LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, v. 86, n. 11, p. 22782324, 1998.
LECUN, Y. A. et al. Efficient backprop. Em: Springer, 2012. p. 948.
LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, v. 521, n. 7553, p. 436444, 2015.
LI, J.; TSUNG, F.; ZOU, C. Multivariate binomial/multinomial control chart. IIE Transactions, v. 46, n. 5, p. 526542, 2014.
LILLIBRIDGE, M. D. et al. Method for Selectively Restricting Access to Computer Systems., fev. 2001.
LIU, L.; DIETTERICH, T. A conditional multinomial mixture model for superset label learning. Advances in neural information processing systems, v. 25, 2012.
MICHENER, G.; MONCAU, L. F.; VELASCO, R. B. Estado brasileiro e transparência avaliando a aplicação da Lei de Acesso à Informação.
MORI, G.; MALIK, J. Recognizing objects in adversarial clutter: Breaking a visual CAPTCHA. IEEE, 2003.
MURRAY, N.; MARCHESOTTI, L.; PERRONNIN, F. AVA: A large-scale database for aesthetic visual analysis. IEEE, 2012.
MURRAY-RUST, P. Open data in science. Nature Precedings, p. 11, 2008.
NA, B. et al. Deep Generative Positive-Unlabeled Learning under Selection Bias. : CIKM ’20.New York, NY, USA: Association for Computing Machinery, 19 out. 2020. Disponível em: <https://doi.org/10.1145/3340531.3411971>.
NELDER, J. A.; WEDDERBURN, R. W. Generalized linear models. Journal of the Royal Statistical Society: Series A (General), v. 135, n. 3, p. 370384, 1972.
NOH, H. et al. Regularizing deep neural networks by noise: Its interpretation and optimization. Advances in Neural Information Processing Systems, v. 30, 2017.
OOMS, J. magick: Advanced Graphics and Image-Processing in R. 2021. Disponível em: <https://CRAN.R-project.org/package=magick>.
R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2021. Disponível em: <https://www.R-project.org/>.
RAMESH, A. et al. Hierarchical Text-Conditional Image Generation with CLIP Latents. n. arXiv:2204.06125, abr. 2022. Disponível em: <https://arxiv.org/abs/2204.06125>.
RESHEF, E.; RAANAN, G.; SOLAN, E. Method and System for Discriminating a Human Action from a Computerized Action., 2005.
SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An introduction. MIT press, 2018.
TRECENTI, J. et al. decryptr: An extensible API for breaking captchas. 2022.
TURING, A. M. Computing machinery and intelligence. Em: Springer, 2009. p. 2365.
USHEY, K.; ALLAIRE, J.; TANG, Y. reticulate: Interface to ’Python’. 2022. Disponível em: <https://CRAN.R-project.org/package=reticulate>.
VON AHN, L. et al. Captcha: Telling Humans and Computers Apart Automatically. Proceedings of Eurocrypt. Anais...2003.
VON AHN, L.; BLUM, M.; LANGFORD, J. Telling Humans and Computers Apart Automatically. Communications of the ACM, v. 47, n. 2, p. 56–60, 2004.
W3C. Inaccessibility of CAPTCHA., 2021. Disponível em: <https://www.w3.org/TR/turingtest/>.
WANG, Y. et al. Make complex captchas simple: a fast text captcha solver based on a small number of samples. Information Sciences, v. 578, p. 181194, 2021.
WICKHAM, H. stringr: Simple, Consistent Wrappers for Common String Operations. b2022. Disponível em: <https://CRAN.R-project.org/package=stringr>.
WICKHAM, H. rvest: Easily Harvest (Scrape) Web Pages. a2022. Disponível em: <https://CRAN.R-project.org/package=rvest>.
WICKHAM, H.; BRYAN, J.; BARRETT, M. usethis: Automate Package and Project Setup. 2022. Disponível em: <https://CRAN.R-project.org/package=usethis>.
WICKHAM, H.; HESTER, J.; OOMS, J. xml2: Parse XML. 2021. Disponível em: <https://CRAN.R-project.org/package=xml2>.
YE, G. et al. Yet another text captcha solver: A generative adversarial network based approach. 2018.
YU, X. et al. Learning with biased complementary labels. 2018.
YUAN, X. et al. Adversarial examples: Attacks and defenses for deep learning. IEEE transactions on neural networks and learning systems, v. 30, n. 9, p. 28052824, 2019.
ZHAO, B. Web scraping. Encyclopedia of big data, p. 13, 2017. Disponível em: <https://www.researchgate.net/profile/Bo-Zhao-3/publication/317177787_Web_Scraping/links/5c293f85a6fdccfc7073192f/Web-Scraping.pdf>.
ZHOU, Z.-H. A brief introduction to weakly supervised learning. National science review, v. 5, n. 1, p. 4453, 2018.
ZHU, X. J. Semi-supervised learning literature survey. 2005.